Distinction-Based and Verification-Assisted Knowledge Modeling

Philippe Michelin
Æbis, Paris, France, pmichelin@aebis.com

Marc Frappier
Université de Sherbrooke, Canada, Marc.Frappier@USherbrooke.ca
Requirements Engineering

• Build mutual understanding between stakeholders

• Pitfalls – too often assume that:
 – key domain concepts are well understood
 – stakeholders share common definitions

• Basic concept definitions are overlooked
 – deemed too obvious to bother with
RE and Law

• Software engineers are not lawyers
 – Not trivial to translate the intent of a law into specific requirements
 • traceable
 • verifiable

• ex: Consent management in healthcare (Canada):
 – At least five different laws, written at different times, with different objectives, address consent management, privacy and confidentiality of EHR
Knowledge Modeling and Law

• Laws can be modeled, structured and abstracted, using software engineering techniques
 – to simplify domain understanding for software engineers
 – to build a bridge between the legal domain and the software engineering domain

• It is very complex to model the whole text and regulations:
 – We choose to focus on essential knowledge conveyed by Basic Concepts
Distinction-Based Domain Modeling

• Assumptions:
 – Clear-cut distinction is prior to definition
 – Symbols are the shortest mean to connect Meanings with total precision:
 • This is what we call “Formalization”

• Formalization allows engineering of Meanings that are computable by a machine
Calculus of distinctions

• Based on *Laws of forms* - *LoF*, of George Spencer Brown:
 – *LoF* is a formal calculus that can be interpreted as Boolean Logic
 – *LoF* was extended by F. Varela to deal with 3-valued logics
 – We extended *LoF* to deal with elements (numbers, words), bunches of elements, types of elements, and mappings
How to make Distinctions in accordance with LoF?

- A Distinction can be made by instantiating a Distinction Pattern:
 - In a Distinction Pattern,
 - the drawn boundary represents the distinction
 - the 2 drawn mutually exclusive sides represent the 2 indications:
 - The inside represents the indication (atomic)
 - The outside represents the counter-indication
 - the link, encompassing the indication and the counter-indication, identify the Distinction as a whole
Distinction Patterns in action! (1)

Instanciations

- **Language**
 - Language_Natural
 - (= Natural Language)
 - Language_Artificial
 - (= Artificial Language)

 \[X : (\text{Language_Natural}) \mid X : (\text{Language_Artificial}) \]

 A Language is either Natural or Artificial, but not both

- **Object**
 - Object_Natural
 - (= Raw material)
 - Object_Artificial
 - (= Artefact)

 \[X : (\text{Object_Natural}) \mid X : (\text{Object_Artificial}) \]

 An Object is either Natural or Artificial, but not both

Pattern

DP6: Opposite Attribute Predicate (OAP)

\[T \]

\[T_A \]

\[T_{[A]} \]

\[X : (T_A) \mid X : (T_{[A]}) \]

A = Natural; [A] = Artificial; T = Language

A = Natural; [A] = Artificial; T = Object
Distinction Patterns in action! (2)

Instanciations

Living

\[(U \sqsubseteq (\text{Child}_T) = T \sqsubseteq (\text{Parent}_U) \]

\[\text{Living} \odot = \text{Living} \]

Note: Identity_{\text{Living}} and Living (Being) are identified

Present

\[(U \sqsubseteq (\text{Past}_T) = T \sqsubseteq (\text{Future}_U) \]

\[\text{present} \odot = \text{present} \]

Pattern

DP7: irreflexive Function Inversion (IFI)

\[X \sqsubseteq (F^\alpha Y) = Y \sqsubseteq (F_X) \]

Note: Identity_M may be identified with M

F = Parent;
F^\alpha = Child;
Id = Id_{\text{Living Being}};

F = Past;
F^\alpha = Future;
T = Present;
Graphical presentation

• We use « UML-like » notations for explaining distinguished words-meaning relations to IT people:
 – « A picture is worth a 1000 words »
Typing modelling

- **Object**
 - **Raw Material**
 - **Artefact**

- **Object**
 - **Object_Natural** (= Raw material)
 - **Object_Artificial** (= Artefact)

X : (Object_Natural) | X : (Object_Artificial)
Inverse Associations modeling

\[\text{Child} \rightarrow \text{Parent} \]

\[\text{Id}_{\text{Living}} \]

\[(U \subseteq \text{Child}_T) = T \subseteq \text{Parent}_U \]

\[\text{Living} \circ = \text{Living} \]

Note: Identity_{\text{Living}} and Living (Being) are identified
Finally: What is a Distinction?

• A Distinction is a single intentional thought that arrives embodied in two mutually incompatible ideas:
 – Distinction Making is a conscious activity of human beings:
 • It produces a clear-cut and well definable indication in the actor’s language
• A Distinction is mental:
 – It must not be confused with its drawing
Distinction-Based Reasoning

- Describing concepts using formulas and operators (symbols)
- Reasoning about concepts to validate definitions
- Calculus on words-meaning is conducted
 - by substituting and replacing into language constructs
 - well defined indications by the body of their definition
 - By example:

 \[
 \begin{align*}
 \text{father_bart} & \approx \text{homer} \\
 \text{mother_bart} & \approx \text{marge} \\
 \text{parent} & \approx \text{father, mother} \\
 (F, G)_X & \approx (F_X), (G_X) \\
 \text{parents_bart} & \approx (\text{homer, marge})
 \end{align*}
 \]
Calculus of Distinctions
Operators

Boolean expressions

A : B reads "A is a B"
A || B reads "A and B are disjoint"

Terms (word expressions)

[A] reads "the opposite of A"
A_B reads "A has quality B"
A | B reads "A or B"
A & B reads "A and B"
Properties of \textit{IsA}

\textit{transitivity}

\[\alpha_1 : \alpha_2 \land \alpha_2 : \alpha_3 \Rightarrow \alpha_1 : \alpha_3 \]

WorkProduct : Artefact and Artefact : Object

\Rightarrow

WorkProduct : Object
Opposite attributes

natural = [artificial]

natural *is the opposite of* artificial

natural *can be substituted by* [artificial]

and vice-versa
Disjointness

\[\alpha \parallel \beta \iff \forall x \cdot \neg (x : \alpha \land x : \beta) \]

two types are disjoint iff they have no common subtypes

\[\alpha _\beta \parallel \alpha_{[\beta]} \]

having opposite qualities makes two concepts distinct

RawMaterial = Object_natural

Artefact = Object_artificial \hspace{1cm} \textit{imply} \hspace{1cm} \text{RawMaterial} \parallel \text{Artefact}

natural = [artificial]
Combining qualities

Service = Product_(intangible & nonStorable);

A service is an intangible and non-storable product

Good = Product_(tangible | storable)

a good is a tangible or storable product

Are services and goods distinct?
Application and IsA

• $A_B : A$
 – An A with quality B is an A

• Service = Product_(intangible & nonStorable)
 – A service is a product
Reasoning about combinations

\[[\alpha \& \beta] = ([\alpha] \& \beta) \mid (\alpha \& [\beta]) \mid ([\alpha] \& [\beta]) \]

Case analysis rule: the opposite of being \(\alpha \& \beta \)
is being at least the opposite of either \(\alpha \) or \(\beta \)

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>[\beta]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(\alpha & \beta)</td>
</tr>
<tr>
<td>([\alpha])</td>
<td>([\alpha] & \beta)</td>
</tr>
</tbody>
</table>
Why not use plain set theory?

\[\alpha \cap \beta = \overline{\alpha} \cup \overline{\beta} \]

The most common de Morgan's law in set theory reduces three cases to two overlapping cases.

We simply use a less common law

\[\overline{\alpha \cap \beta} = (\overline{\alpha} \cap \beta) \cup (\alpha \cap \overline{\beta}) \cup (\overline{\alpha} \cap \overline{\beta}) \]
Complement of qualities

\[[\alpha_\beta] = \alpha_\beta \]

The opposite of \(\alpha \) having quality \(\beta \) is \(\alpha \) having the opposite of quality \(\beta \)

It is a relative complement
Reasoning on services

[service] = \langle\text{definition of service}\rangle

\[\text{Product} _\text{(intangible \& nonStorable)}\]

\[\text{Product} _\text{[(intangible \& nonStorable)]}\]

\[\text{Product} _\text{(([intangible] \& nonStorable)}\]

\[\text{Flowware}\]

\[\text{Software}\]

\[\text{Hardware}\]
IsA based on qualities

\[\beta_1 \& \beta_2 : \beta_1 \]
\[\beta_1 : \beta_1 \mid \beta_2 \]
\[\beta_1 : \beta_2 \Rightarrow \alpha _ \beta_1 : \alpha _ \beta_2 \]

distinction based on IsA

\[\alpha : \beta_1 \land \beta_1 \parallel \beta_2 \Rightarrow \alpha \parallel \beta_2 \]
Distinctions on products

- **Product**
 - delivered

- **Good**
 - tangible & storable

- **Service**
 - intangible & nonStorable

 - **Hardware**
 - tangible & storable

 - **Flowware**
 - tangible & nonStorable

 - **Software**
 - intangible & storable
raw materials are natural objects
Set theoretic interpretation

• word = set
• _ = \cap
• [] = _ (* complément *)
• & = \cap
• | = \cup
• A : B ⇔ A \subseteq B
• A || B ⇔ A \cap B = \emptyset
Set theoretic interpretation

- Object_natural = RawMaterial

can be seen as

"the set of objects that are natural are the raw materials"

\[\text{Object} \cap \text{natural} = \text{RawMaterial} \]
Validation of models using Alloy

- Alloy is symbolic model checker for first-order logic with relations
 - FOF encoded into propositional formula
 - reuses common SAT solvers
 - only two data types
 - signatures (to define basic types)
 - finite subset of the integers
 - Object-oriented in style
What Alloy can do for us

• verify the consistency of models
 – check that definitions contain no contradiction

• check properties of models
 – state properties and check that they are entailed by the definitions
Conclusion

• Calculus of words
 – Words are indications in distinctions of a domain
 – Simple operators intended to represent and manipulate concepts of a domain

• Reason about words
 – Confirm distinctions
 – Check consistency with Alloy
 – Make deductions based on assertions about words